Alina Mamedova¹, Jakub Zlatník¹, Johannes Heidenberger², Mario Rothbauer², Ivan Řehoř¹, Viola Tokárová^{1*}

¹University of Chemistry and Technology, Prague, Department of Chemical Engineering, Czech Republic ²Medical University of Vienna, Department of Orthopedics and Trauma-Surgery, Vienna, Austria

Web: https://biomimetic-lab.vscht.cz/ *email: tokarovv@vscht.cz

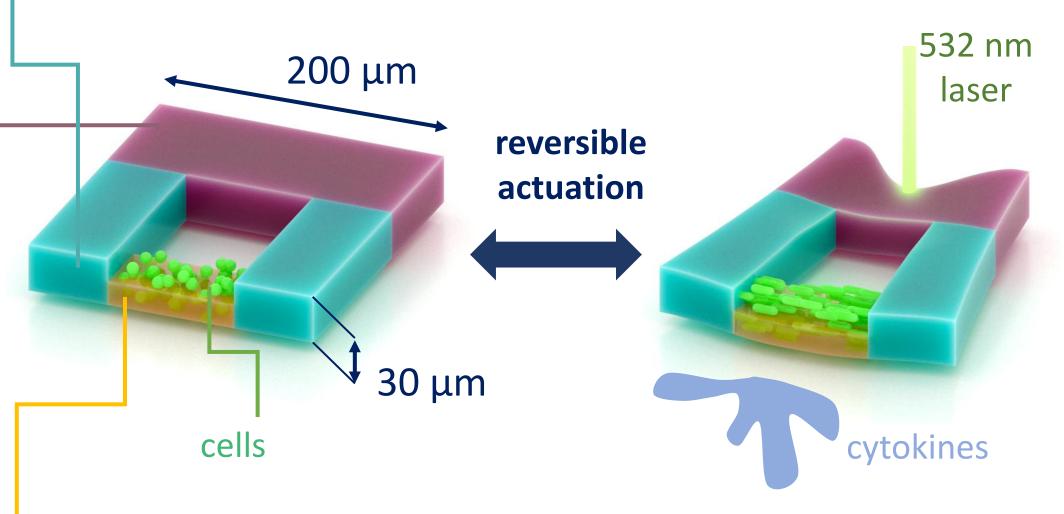
INTRODUCTION

PRAGUE

UNIVERSITY OF

CHEMISTRY AND TECHNOLOGY

Cells are highly sensitive to mechanical cues such as matrix stiffness and external forces, which play a key role in regulating their behavior. Understanding these mechanobiological responses requires in vitro models that combine 3D cell encapsulation with dynamic mechanical stimulation. Hydrogels are ideal for this purpose thanks to their high water content and tunable mechanical properties.

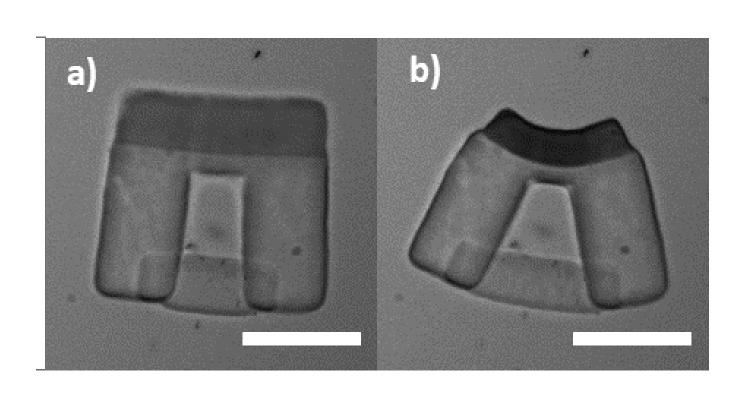

We aim to identify a biocompatible, UV-crosslinkable hydrogel suitable for encapsulating ACL cells within a soft microactuator. The actuator, fabricated using stop-flow lithography, employs a thermoresponsive PNIPAM hydrogel activated by focused laser light to generate reversible cyclic tension, mimicking physiological strain. Our goal is to establish a cell-supportive hydrogel system that enables reliable and reproducible mechanostimulation at the microscale.

MICROACTUATOR DESIGN

- Thermoresponsive hydrogel
- Poly(N-isopropylacrylamide) (PNIPAM)
- Lower critical solution temperature (LCST) ≈ 32 °C
- Gold nanoparticles (10 nm) + laser (532 nm) \rightarrow plasmonic heating \rightarrow collapse of PNIPAM

Non responsive hydrogel

- Polyethylene glycol diacrylate (PEGDA)
- Bendable but does not react to temperature shifts


Biocompatible hydrogel

- Supports high viability and cell spreading
- UV-crosslinkable for photolithography

HYDROGEL ACTUATION

25 % hPLMA linkage

- Fabrication via photolithography
- Maximal elongation **28.55** ± 17.43 %
- Estimated microactuators's force from **44.30** \pm 16.54 μ N to **85.10** \pm 10.36 μ N depending on laser intensity

Images of a microactuator with attached hPLMA part: a) at rest state b) at maximal elongation, scale bar 100 μm

Mechanostimulation

- Microactuator allows to stimulate cells at 37 °C
- Elongation range covers hypo- and hyper-physiological conditions
- Continuous and consistent stimulation over at least 1 hour period

FUTURE WORK

- Simultaneously actuate multiple microactuators
- Encapsulation of cells into the microactuator linkage part
- Long-term mechanostimulation and analysis of cellular responses:
 - Cytoskeleton remodeling observation
 - Cytokine production monitoring through biosensing

BIOCOMPATIBILITY TESTING

Four hydrogels have been tested for cell encapsulation:

- 1. Dex-HEMA
- Dextran hydroxyethyl methacrylate
- Biodegradable and biocompatible polysaccharide of bacterial origin
- Synthetized in our laboratory
- Concentration: 15 % (w/w)

2. hPLMA

- Methacrylated human platelet lysate
- Mixture of proteins, growth factors and other bioactive components
- Purchased from Metatissue
- Concentrations: 12 and 25 % (w/w)

3. ColMA

- Methacrylated bovine collagen type I
- Protein with the ability to polymerize by heat and UV
- Purchased from Advanced BioMatrix
- Concentration: 0.3 % (w/w)

4. HAMA

- Methacrylated hyaluronic acid
- 100-150 kDa polysaccharide
- Purchased from Advanced BioMatrix

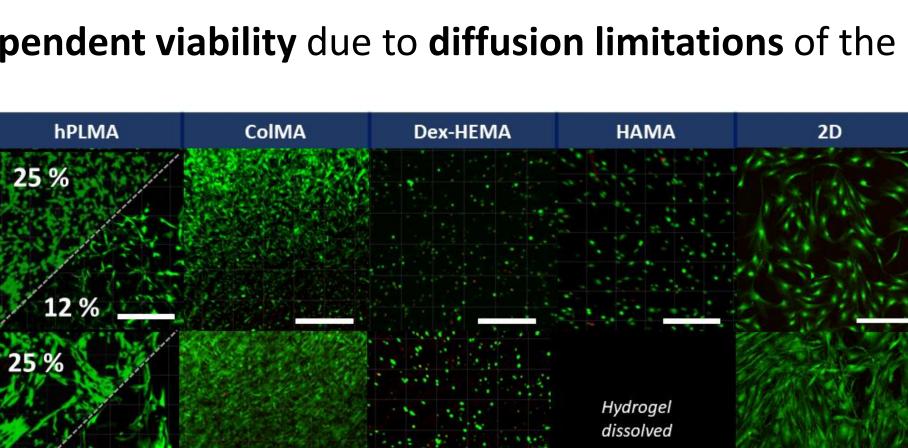
ColMA

■ HAMA

Dex-HEMA

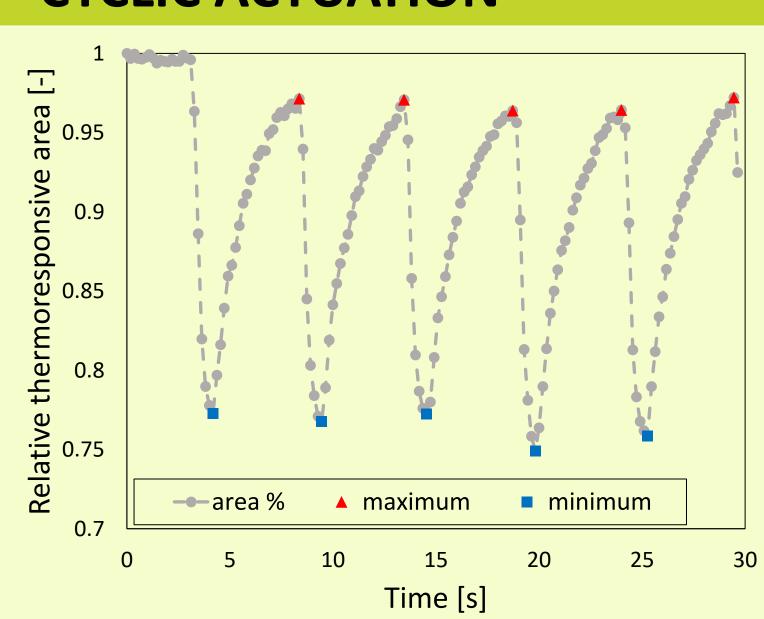
Concentration: 2 % (w/w)

Methodology


- Anterior cruciate ligament (ACL) cells encapsulated at 1000 cell/μL into 20 μL hydrogel droplets
- Crosslinked under UV for 65 90 s
- Incubated in culture media at 37 °C
- Live/dead staining (Calcein-AM/Propidium Iodide)
 - Confocal imaging

Viability results

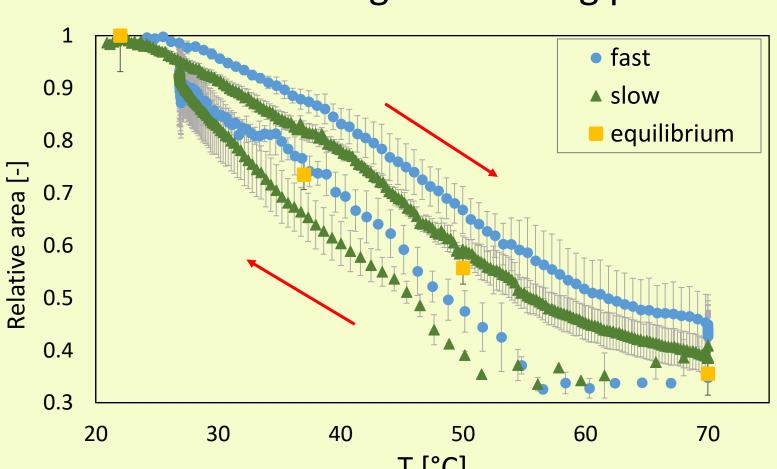
- Bulk viability above 80 % for all tested hydrogels
- Evaluation after 1, 2, 3 and 7 days
- HAMA dissolved prematurely
- Only Dex-HEMA showed position-dependent viability due to diffusion limitations of the polymeric network


Morphology results

- Only **protein-based** hydrogels hPLMA and ColMA allowed for cell **spreading**
- ColMA proved problematic for photolithography
- Biocompatibility testing identified **hPLMA** as the most suitable candidate

Confocal images of the morphology of encapsulated ACL cells in different hydrogels, stained by Calcein-AM and Propidium Iodide on day 3 and day 7 of incubation, 2D cultivated ACL cells for a comparison, scale bar 300 μm

CYCLIC ACTUATION



Relative area change of the thermoresponsive actuator segment during repeated on/off laser activation

- Repeated on/off laser stimulation
- Monitoring of the **thermoresponsive** segment deformation
- Reversible contraction and relaxation of the active region after each pulse

Thermal shrinkage

- Validation of the thermoresponsive behavior of the actuator's active segment
- Heating protocols: fast heating (10 °C/min, blue circles), slow heating (1 °C/min, green triangles), and equilibrium values (yellow squares)
- Temperature curves exhibit clear hysteresis between the heating and cooling phases

Temperature-dependent shrinkage of the thermoresponsive segment under fast, slow, and equilibrium heating conditions

